Home
Class 11
MATHS
If lim(x->oo)(x^2+3x+5)/(4x+1+x^k) exis...

If `lim_(x->oo)(x^2+3x+5)/(4x+1+x^k)` exists then `k=2` (b) `k<2` (c) `k >2` (d) `k >=2`

Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    RESONANCE DPP|Exercise All Questions|1 Videos
  • LOGARITHM

    RESONANCE DPP|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If (lim)_(x->oo)(7^(k x)+8)/(7^(5x)+6) does not exist then ' k ' can be

lim_ (x rarr-oo) x (sqrt (x ^ (2) + k) -x)

If (x-4)/(x^(2)-5x-2k)=(2)/(x-2)-(1)/(x+k), then

Find lim_(x-> oo) f(x) if (4x-1)/x < f(x) < (4 x^2 + 3x)/ x^2 for all xgt5

lim_(x->0) (log(2+x^2)-log(2-x^2))/x=k FInd k value

If lim _(xto oo) (sqrt( x ^(2) -x+1)-ax -b)=0, then for k ge 2, (k in N ) lim _(xto oo) sec ^(2n) (k ! pi b ) =

If lim_(x rarr1)cos ec^(-1)((k^(2))/(ln x)-(k^(2))/(x-1)) exists, then k belongs to the interval exists,

If lim_(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim_(x to k) (x^(2) - k^(2))/(x - k) find the value of K

x^2+(2-k)x+k-(3)/(4) is a perfect square then k= (A) 3 (B) 1 (C) 7 (D) 5