Home
Class 12
MATHS
int(0)^( pi/4)sqrt(tan x)dx...

int_(0)^( pi/4)sqrt(tan x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi/4) sqrt(tanx) dx+int_(0)^(pi/4) sqrt(cotx) dx is equal to

int_(0)^(pi//4) [sqrt(tan x)+sqrt(cot x)]dx

int_(0)^(pi//4)[sqrt(tan x) + sqrt(cot x)] = dx

Show that int_(0)^(pi//4) (sqrt(tan x )+sqrt(cot x))dx= pi/sqrt(2)

Show that : int_(0)^(pi//2) (sqrt(tan x) +sqrt(cot x))dx=sqrt(2)pi .

Show that int_(0)^(pi//2)(sqrt(tan x)+sqrt(cot x))dx = pisqrt(2)

Evaluate the definite integrals int_(0)^((pi)/(4))(tan x)dx

Evaluate the definite integrals int_(0)^((pi)/(4)tan x)dx

Prove that: int_(0)^((pi)/(4))(sqrt(tan x)+sqrt(cot x)dx=sqrt(2)*(pi)/(2)