Home
Class 9
MATHS
findsqrt(7+sqrt(48))=...

find`sqrt(7+sqrt(48))`=______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sqrt{7 + \sqrt{48}} \), we can follow these steps: ### Step 1: Simplify \( \sqrt{48} \) First, we need to simplify \( \sqrt{48} \): \[ \sqrt{48} = \sqrt{16 \times 3} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3} \] So, we can rewrite the expression: \[ \sqrt{7 + \sqrt{48}} = \sqrt{7 + 4\sqrt{3}} \] ### Step 2: Rewrite 7 Next, we can express 7 in a form that will help us use the identity \( (a + b)^2 = a^2 + 2ab + b^2 \): \[ 7 = 4 + 3 \] Thus, we can rewrite the expression: \[ \sqrt{7 + 4\sqrt{3}} = \sqrt{(4 + 3) + 4\sqrt{3}} = \sqrt{4 + 3 + 4\sqrt{3}} \] ### Step 3: Identify \( a \) and \( b \) Now, we can identify \( a \) and \( b \) for the identity: Let \( a = \sqrt{4} = 2 \) and \( b = \sqrt{3} \). ### Step 4: Use the identity We can now express \( 7 + 4\sqrt{3} \) as: \[ (2 + \sqrt{3})^2 = 2^2 + 2(2)(\sqrt{3}) + (\sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] Thus, we have: \[ \sqrt{7 + 4\sqrt{3}} = \sqrt{(2 + \sqrt{3})^2} \] ### Step 5: Simplify the square root Taking the square root gives us: \[ \sqrt{(2 + \sqrt{3})^2} = 2 + \sqrt{3} \] ### Final Answer Thus, the final answer is: \[ \sqrt{7 + \sqrt{48}} = 2 + \sqrt{3} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

(1) sqrt(13-x sqrt(10))=sqrt(8)+sqrt(5) then find the value of x,(2) find sqrt(7+4sqrt(3))

sqrt(sqrt(7+sqrt(48))-sqrt(7-sqrt(48)))=

If sqrt(3+sqrt3+sqrt(2+sqrt3+sqrt(7+sqrt(48))))=p+sqrtq then find p, q

If m and n are natural numbers such that sqrt(7+sqrt(48))=sqrt(m)+sqrt(n) then m^(2)+n^(2)=

If sqrt(2)=1.414 and sqrt(3)=1.732 find the value of sqrt(72)+sqrt(48)^(@)

Evaluate sqrt(3+sqrt(3)+sqrt(2+sqrt(3))+sqrt(7+sqrt(48)))

Find the value of (sqrt(32)+sqrt(48))/(sqrt(8)+sqrt(12))

Simplify the following expression 7 sqrt48 +7 sqrt(147)

32.Give that sqrt(3)=1.732 find the value of sqrt(75)+(1)/(2)sqrt(48)-sqrt(192)

If 2(sqrt(3+sqrt(5-sqrt(13+sqrt(48)))))=sqrt(a)+sqrt(b) where a and b are nutural number find (a+b).