Home
Class 9
MATHS
Which of the two expressions , sqrt(11)-...

Which of the two expressions , `sqrt(11)-sqrt(10)` and `sqrt(12)-sqrt(11)` is greater?

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the two expressions, \( \sqrt{11} - \sqrt{10} \) and \( \sqrt{12} - \sqrt{11} \), is greater, we can rationalize both expressions and compare their values. ### Step-by-Step Solution: **Step 1: Rationalize the first expression \( \sqrt{11} - \sqrt{10} \)** To rationalize \( \sqrt{11} - \sqrt{10} \), we multiply the numerator and denominator by \( \sqrt{11} + \sqrt{10} \): \[ \sqrt{11} - \sqrt{10} = \frac{(\sqrt{11} - \sqrt{10})(\sqrt{11} + \sqrt{10})}{\sqrt{11} + \sqrt{10}} = \frac{11 - 10}{\sqrt{11} + \sqrt{10}} = \frac{1}{\sqrt{11} + \sqrt{10}} \] **Step 2: Rationalize the second expression \( \sqrt{12} - \sqrt{11} \)** Similarly, we rationalize \( \sqrt{12} - \sqrt{11} \) by multiplying the numerator and denominator by \( \sqrt{12} + \sqrt{11} \): \[ \sqrt{12} - \sqrt{11} = \frac{(\sqrt{12} - \sqrt{11})(\sqrt{12} + \sqrt{11})}{\sqrt{12} + \sqrt{11}} = \frac{12 - 11}{\sqrt{12} + \sqrt{11}} = \frac{1}{\sqrt{12} + \sqrt{11}} \] **Step 3: Compare the two rationalized expressions** Now we have: 1. \( \sqrt{11} - \sqrt{10} = \frac{1}{\sqrt{11} + \sqrt{10}} \) 2. \( \sqrt{12} - \sqrt{11} = \frac{1}{\sqrt{12} + \sqrt{11}} \) To compare these two fractions, we note that: - \( \sqrt{11} + \sqrt{10} \) is less than \( \sqrt{12} + \sqrt{11} \) because \( \sqrt{12} > \sqrt{11} \). - Therefore, since the numerator (1) is the same, the fraction with the smaller denominator will be larger. Thus, we conclude: \[ \sqrt{11} - \sqrt{10} > \sqrt{12} - \sqrt{11} \] ### Final Answer: \(\sqrt{11} - \sqrt{10}\) is greater than \(\sqrt{12} - \sqrt{11}\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Among sqrt(7)-sqrt(3) and sqrt(11)-sqrt(7) which is greater?

If x=sqrt(11)-sqrt(10),y=sqrt(12)-sqrt(11), then

If x=sqrt(7)-sqrt(5) and y=sqrt(13)-sqrt(11) then

sqrt(?)-11=sqrt(1521)

The greater between sqrt(17)-sqrt(12) and sqrt(11)-sqrt(6) is

sqrt(?)-11=sqrt(1764)

Which of the following is greater? sqrt(13)-sqrt(12),sqrt(14)-sqrt(13)

Which is greater sqrt(11)-sqrt(6) or sqrt(17)-sqrt(12) ?

sqrt(x+4)+sqrt(x+20)=2sqrt(x+11)