Home
Class 9
MATHS
If x=(1)/(7+4sqrt(3)), y=(1)/(7-4sqrt(3)...

If `x=(1)/(7+4sqrt(3)), y=(1)/(7-4sqrt(3))`, find the value of `5x^(2)-7xy-5y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(5x^2 - 7xy - 5y^2\) given \(x = \frac{1}{7 + 4\sqrt{3}}\) and \(y = \frac{1}{7 - 4\sqrt{3}}\). ### Step 1: Find the values of \(x\) and \(y\) Given: \[ x = \frac{1}{7 + 4\sqrt{3}}, \quad y = \frac{1}{7 - 4\sqrt{3}} \] To simplify \(x\), we multiply the numerator and denominator by the conjugate of the denominator: \[ x = \frac{1 \cdot (7 - 4\sqrt{3})}{(7 + 4\sqrt{3})(7 - 4\sqrt{3})} \] Calculating the denominator: \[ (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1 \] Thus, \[ x = 7 - 4\sqrt{3} \] Now for \(y\): \[ y = \frac{1}{7 - 4\sqrt{3}} \Rightarrow y = \frac{1 \cdot (7 + 4\sqrt{3})}{(7 - 4\sqrt{3})(7 + 4\sqrt{3})} \] Calculating the denominator again: \[ (7 - 4\sqrt{3})(7 + 4\sqrt{3}) = 1 \] Thus, \[ y = 7 + 4\sqrt{3} \] ### Step 2: Substitute \(x\) and \(y\) into the expression \(5x^2 - 7xy - 5y^2\) Now we have: \[ x = 7 - 4\sqrt{3}, \quad y = 7 + 4\sqrt{3} \] Calculating \(x^2\) and \(y^2\): \[ x^2 = (7 - 4\sqrt{3})^2 = 49 - 56\sqrt{3} + 48 = 97 - 56\sqrt{3} \] \[ y^2 = (7 + 4\sqrt{3})^2 = 49 + 56\sqrt{3} + 48 = 97 + 56\sqrt{3} \] Calculating \(xy\): \[ xy = (7 - 4\sqrt{3})(7 + 4\sqrt{3}) = 49 - 48 = 1 \] ### Step 3: Substitute into the expression Now substituting into the expression: \[ 5x^2 = 5(97 - 56\sqrt{3}) = 485 - 280\sqrt{3} \] \[ -7xy = -7 \cdot 1 = -7 \] \[ -5y^2 = -5(97 + 56\sqrt{3}) = -485 - 280\sqrt{3} \] Combining these: \[ 5x^2 - 7xy - 5y^2 = (485 - 280\sqrt{3}) - 7 - (485 + 280\sqrt{3}) \] \[ = 485 - 7 - 485 - 280\sqrt{3} - 280\sqrt{3} \] \[ = -7 - 560\sqrt{3} \] ### Final Result Thus, the value of \(5x^2 - 7xy - 5y^2\) is: \[ \boxed{-560\sqrt{3} - 7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1)/(2-sqrt(3)), find the value of x^(3)-2x^(2)-7x+5

If x=7-4sqrt(3) then find the value of x^(2)-(1)/(x^(2))

If x=(sqrt(3)+1)/(2), find the value of 4x^(3)+2x^(2)-8x+7

If x = 7 + 4 sqrt(3) , y = 7 - 4 sqrt(3) , find the value of (1)/(x^(2)) + (1)/(y^(2)) .

((sqrt(7))/(4)x-(3)/(sqrt(2))y)^(2) find the value

given x=(sqrt(7)+sqrt(3))/(sqrt(7)-sqrt(3)),y=(sqrt(7)-sqrt(3))/(sqrt(7)+sqrt(3)) find the value of x^(4)+y^(4)+(x+y)^(4)

If x=root(3)(7+5sqrt(2))-(1)/(root(3)(7+5sqrt(2))), then the value of x^(3)+3x-14 is equal to 1 b.0 c.2 d.4

If x=root(3)(7+5sqrt(2))-(1)/(root(3)(7+5sqrt(2))), then the value of x^(3)+3x-14 is equal to 1(b)0(c)2 (d) 4