Home
Class 9
MATHS
Given sqrt(3)=1.7321, find the value of ...

Given `sqrt(3)=1.7321`, find the value of the following surd, correct to three decimal places.
`(sqrt(3)+1)/(sqrt(3)-1)+(sqrt(3)-1)/(sqrt(3)+1)+(4+sqrt(3))/(4-sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\sqrt{3}+1}{\sqrt{3}-1} + \frac{\sqrt{3}-1}{\sqrt{3}+1} + \frac{4+\sqrt{3}}{4-\sqrt{3}} \] given that \(\sqrt{3} = 1.7321\), we will compute each part step by step. ### Step 1: Substitute the value of \(\sqrt{3}\) Substituting \(\sqrt{3} = 1.7321\) into the expression: \[ \frac{1.7321 + 1}{1.7321 - 1} + \frac{1.7321 - 1}{1.7321 + 1} + \frac{4 + 1.7321}{4 - 1.7321} \] ### Step 2: Calculate each term **First Term:** \[ \frac{1.7321 + 1}{1.7321 - 1} = \frac{2.7321}{0.7321} \] Calculating the value: \[ \frac{2.7321}{0.7321} \approx 3.733 \] **Second Term:** \[ \frac{1.7321 - 1}{1.7321 + 1} = \frac{0.7321}{2.7321} \] Calculating the value: \[ \frac{0.7321}{2.7321} \approx 0.268 \] **Third Term:** \[ \frac{4 + 1.7321}{4 - 1.7321} = \frac{5.7321}{2.2679} \] Calculating the value: \[ \frac{5.7321}{2.2679} \approx 2.527 \] ### Step 3: Combine all terms Now, we will add all three results together: \[ 3.733 + 0.268 + 2.527 \] Calculating the total: \[ 3.733 + 0.268 = 4.001 \] \[ 4.001 + 2.527 = 6.528 \] ### Final Result Thus, the value of the entire expression, correct to three decimal places, is: \[ \boxed{6.528} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(3)-1)/(sqrt(3)+1)xx(sqrt(3)-1)/(sqrt(3)-1)

(sqrt3+1)/(sqrt3-1)times(sqrt3+1)/(sqrt3+1)=?

(1)/(4sqrt(3)-3sqrt(5))

Evaluate (sqrt(3)-1/sqrt(3))/(1+sqrt(3)(1/sqrt(3)))

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

Find a and b when (sqrt3 -1)/(sqrt3 +1) +(sqrt3 +1)/(sqrt3 -1) = a+sqrt3 b

The value of (2 + sqrt(3))/(2- sqrt(3)) + (2- sqrt(3))/(2 + sqrt(3)) + ( sqrt(3) + 1)/(sqrt(3) -1) is

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))-(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1))

Evaluate 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))