Home
Class 9
MATHS
If sum(k=4)^(143) (1)/(sqrt(k)+sqrt(k+1)...

If `sum_(k=4)^(143) (1)/(sqrt(k)+sqrt(k+1))=a-sqrt(b)` then a and b respectively are

A

`10` and `0`

B

`-10 and 4`

C

10 and 4

D

`-10 and 0`

Text Solution

Verified by Experts

The correct Answer is:
A

(i) Substitute the values of k and rationalize every term of LHS.
(ii) `underset(k=4)overset(143)sum(1)/(sqrt(k)+sqrt(k+1))=(1)/(sqrt(5)+sqrt(4))+(1)/(sqrt(6)+sqrt(5))+...+(1)/(sqrt(144)+sqrt(143))`
(iii) Rationalize the denominator two times.
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    PEARSON IIT JEE FOUNDATION|Exercise Level 2|25 Videos
  • MATRICES

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|20 Videos
  • PERCENTAGES, PROFIT AND LOSS, DISCOUNT AND PARTERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|13 Videos

Similar Questions

Explore conceptually related problems

If sum_(k=4)^(143)(1)/(sqrt(k)+sqrt(k+1))=a-sqrt(b) then a and b are respectively

sum_(k=1)^(oo)(1)/(k sqrt(k+2)+(k+2)sqrt(k))=(2+sqrt(2))/(a) then

sum_(k=1)^(360)(1)/(k sqrt(k+1)+(k+1)sqrt(k)) is the ratio of two relatively prime positive integers m and n then the value of m+n is equal to

If sum_(k = 1)^(oo) (1)/((k + 2)sqrt(k) + ksqrt(k + 2)) = (sqrt(a) + sqrt(b))/(sqrt(c)) , where a, b, c in N and a,b,c in [1, 15] , then a + b + c is equal to

log_sqrt(k) (sqrt(k sqrt(k sqrt(k sqrt(k)))))

If log (sqrt(2)+sqrt(3))=cosh^(-1)k then k=

If 4sqrt(3sqrt(x^(2)))=x^(k), then k=

Let K=sum_(r=1)^(n)(1)/(r sqrt(r+1)+(r+1)sqrt(r)) and [x] denotes greatest integer function less than or equal to x then [K]