Home
Class 10
MATHS
Simplify: log((3)/(8)) + log ((45)/(8))...

Simplify: `log((3)/(8)) + log ((45)/(8)) - log ((15)/(16))`.

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression `log((3)/(8)) + log((45)/(8)) - log((15)/(16))`, we can follow these steps: ### Step 1: Combine the first two logarithms Using the property of logarithms that states `log(a) + log(b) = log(a * b)`, we can combine the first two terms: \[ log\left(\frac{3}{8}\right) + log\left(\frac{45}{8}\right) = log\left(\frac{3}{8} \cdot \frac{45}{8}\right) \] Calculating the product: \[ \frac{3 \cdot 45}{8 \cdot 8} = \frac{135}{64} \] Thus, we have: \[ log\left(\frac{135}{64}\right) \] ### Step 2: Subtract the third logarithm Now, we will subtract the third logarithm using the property `log(a) - log(b) = log(a / b)`: \[ log\left(\frac{135}{64}\right) - log\left(\frac{15}{16}\right) = log\left(\frac{\frac{135}{64}}{\frac{15}{16}}\right) \] This simplifies to: \[ log\left(\frac{135}{64} \cdot \frac{16}{15}\right) \] ### Step 3: Simplify the fraction Now we simplify the expression inside the logarithm: \[ \frac{135 \cdot 16}{64 \cdot 15} \] Calculating the numerator and denominator: - The numerator: \(135 \cdot 16 = 2160\) - The denominator: \(64 \cdot 15 = 960\) Thus, we have: \[ log\left(\frac{2160}{960}\right) \] ### Step 4: Simplify the fraction further Now we can simplify \(\frac{2160}{960}\): \[ \frac{2160 \div 960}{960 \div 960} = \frac{2160 \div 960}{1} = \frac{27}{12} = \frac{9}{4} \] ### Step 5: Final expression Now we have: \[ log\left(\frac{9}{4}\right) \] ### Step 6: Rewrite in terms of simpler logs We can express \(\frac{9}{4}\) as: \[ log\left(\left(\frac{3}{2}\right)^2\right) = 2 \cdot log\left(\frac{3}{2}\right) \] ### Final Answer Thus, the simplified expression is: \[ 2 \cdot log\left(\frac{3}{2}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

log((9)/(14))+log((35)/(24))-log((15)/(16))=0

The value of log ((18)/(14))+log((35)/(48))-log((15)/(16))=

simplify: log(log x^(4))-log(log x)

Simplify: 2^((log)_(3)5)-5^((log)_(3)2)

show that 7log((16)/(15))+5log((25)/(24))+3log((81)/(80))=log2

Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80) .