Home
Class 10
MATHS
Solve: x^(log(4)3)+3^(log(4)x)=18....

Solve: `x^(log_(4)3)+3^(log_(4)x)=18`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^{\log_{4}3} + 3^{\log_{4}x} = 18 \), we can follow these steps: ### Step 1: Rewrite the equation Let \( y = x^{\log_{4}3} \). Then, the equation becomes: \[ y + 3^{\log_{4}x} = 18 \] ### Step 2: Express \( 3^{\log_{4}x} \) in terms of \( y \) Using the property of logarithms, we can express \( 3^{\log_{4}x} \) as follows: \[ 3^{\log_{4}x} = 3^{\frac{\log_{3}x}{\log_{3}4}} = \left(3^{\log_{3}x}\right)^{\frac{1}{\log_{3}4}} = x^{\frac{1}{\log_{3}4}} \] Thus, we can rewrite the equation: \[ y + x^{\frac{1}{\log_{3}4}} = 18 \] ### Step 3: Substitute \( y \) back into the equation Now substituting \( y = x^{\log_{4}3} \) back into the equation gives us: \[ x^{\log_{4}3} + x^{\frac{1}{\log_{3}4}} = 18 \] ### Step 4: Simplify the equation We know that \( \log_{4}3 = \frac{1}{\log_{3}4} \), so we can express \( x^{\frac{1}{\log_{3}4}} \) as \( x^{\log_{4}3} \). Thus, we can rewrite: \[ x^{\log_{4}3} + x^{\log_{4}3} = 18 \] This simplifies to: \[ 2x^{\log_{4}3} = 18 \] ### Step 5: Solve for \( x^{\log_{4}3} \) Dividing both sides by 2 gives: \[ x^{\log_{4}3} = 9 \] ### Step 6: Take logarithm on both sides Taking logarithm base 4 on both sides: \[ \log_{4}(x^{\log_{4}3}) = \log_{4}(9) \] Using the power rule of logarithms: \[ \log_{4}3 \cdot \log_{4}x = \log_{4}(9) \] ### Step 7: Solve for \( \log_{4}x \) Now, we can express \( \log_{4}x \) as: \[ \log_{4}x = \frac{\log_{4}(9)}{\log_{4}(3)} \] ### Step 8: Convert \( \log_{4}(9) \) We know that \( 9 = 3^2 \), so: \[ \log_{4}(9) = 2\log_{4}(3) \] Thus, substituting back gives: \[ \log_{4}x = \frac{2\log_{4}(3)}{\log_{4}(3)} = 2 \] ### Step 9: Solve for \( x \) Taking antilogarithm gives: \[ x = 4^2 = 16 \] ### Final Answer The solution to the equation \( x^{\log_{4}3} + 3^{\log_{4}x} = 18 \) is: \[ \boxed{16} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve x^(log_(4) x)=2^(3(log_(4)x+3) .

Solve :log_(4)(log_(3)(log_(2)x))=0

Solve the equation 2x^(log_(4)^(3))+3^(log_(4)^(x)=27

If 2x^(log_(4)3)+3^(log_(4)x)= 27 , then x is equal to

Solve :log_(3)(1+log_(3)(2^(x)-7))=1

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve log_(4)(x-1)= log_(2) (x-3) .

Solve the following equations. (iii) 2.x^(log_(4)3)+3^(log_4x)=27

Solve :2(log)_(3)x-4(log)_(x)27 1)

Solve: 4^(log_(2)x)-2x-3=0