Home
Class 10
MATHS
If log(48) 81 = x, then log(12)3 = ....

If `log_(48) 81 = x`, then `log_(12)3` = ______.

A

`(x+4)/(2x)`

B

`(x+4)/(x)`

C

`(x)/(x+4)`

D

`(2x)/(x+4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_{12} 3 \) given that \( \log_{48} 81 = x \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ \log_{48} 81 = x \] 2. **Express 81 in terms of powers of 3:** \[ 81 = 3^4 \] So we can rewrite the logarithm: \[ \log_{48} (3^4) = x \] 3. **Use the power rule of logarithms:** According to the power rule, \( \log_b (a^n) = n \cdot \log_b a \): \[ 4 \cdot \log_{48} 3 = x \] Therefore, we can express \( \log_{48} 3 \): \[ \log_{48} 3 = \frac{x}{4} \] 4. **Use the change of base formula:** The change of base formula states that \( \log_a b = \frac{1}{\log_b a} \): \[ \log_{48} 3 = \frac{1}{\log_3 48} \] Hence, we can write: \[ \frac{x}{4} = \frac{1}{\log_3 48} \] 5. **Rearranging gives us:** \[ \log_3 48 = \frac{4}{x} \] 6. **Express 48 in terms of its prime factors:** \[ 48 = 16 \cdot 3 = 4^2 \cdot 3 \] Thus, we can write: \[ \log_3 48 = \log_3 (4^2 \cdot 3) = \log_3 (4^2) + \log_3 3 \] 7. **Using the power rule again:** \[ \log_3 (4^2) = 2 \cdot \log_3 4 \] Since \( \log_3 3 = 1 \), we have: \[ \log_3 48 = 2 \cdot \log_3 4 + 1 \] 8. **Equating the two expressions for \( \log_3 48 \):** \[ 2 \cdot \log_3 4 + 1 = \frac{4}{x} \] 9. **Isolate \( \log_3 4 \):** \[ 2 \cdot \log_3 4 = \frac{4}{x} - 1 \] \[ \log_3 4 = \frac{2}{x} - \frac{1}{2} \] 10. **Now, find \( \log_{12} 3 \):** Since \( 12 = 4 \cdot 3 \): \[ \log_{12} 3 = \log_{12} (4 \cdot 3) = \log_{12} 4 + \log_{12} 3 \] Using the change of base formula: \[ \log_{12} 4 = \frac{\log_3 4}{\log_3 12} \] And \( \log_3 12 = \log_3 (4 \cdot 3) = \log_3 4 + \log_3 3 = \log_3 4 + 1 \). 11. **Substituting back:** \[ \log_{12} 3 = \frac{\log_3 4}{\log_3 4 + 1} \] 12. **Substituting \( \log_3 4 \):** \[ \log_{12} 3 = \frac{\frac{2}{x} - \frac{1}{2}}{\frac{2}{x} - \frac{1}{2} + 1} \] ### Final Answer: Thus, we have derived the expression for \( \log_{12} 3 \) in terms of \( x \).

To solve the problem, we need to find the value of \( \log_{12} 3 \) given that \( \log_{48} 81 = x \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ \log_{48} 81 = x \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(3)[log_(2){log_(x)(log_(6)216^(3))}]=0 , then log_(3)(3x) = ______.

If log81 = loga then 4(log_(9)a) = _____

If log_(12) (log_(7) x) lt 0 , then x belong to ______.

If log_(3) a + log_(9) a + log_(81) a= (35)/(4) , then a = ______.

If log_(9)12=a, then the value of log_(24)48 is equal to

Find log_(2)(48) in terms of iflog_(12)(36)=

If log _(12)81=x then find the value of log_(6)3

IF a = log_(24) 12, b = log_(36) 24, c = log_(48)36 , then 1 + abc is equal to

If a= log_(24) 12, b = log_(36) 24, c = log_(48) 36 , then 1 + abc is equal to