Home
Class 10
MATHS
If log(l)p, log(m)p and log(n)p are in ...

If `log_(l)p, log_(m)p and log_(n)p` are in AP, then `(ln)^(log_(l)m)` = ______.

A

`n^(2)`

B

`m^(2)`

C

`l^(2)`

D

`p^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( \log_{l} p \), \( \log_{m} p \), and \( \log_{n} p \) are in arithmetic progression (AP), then \( (ln)^{\log_{l} m} = ? \). ### Step-by-step Solution: 1. **Understanding the Arithmetic Progression**: Since \( \log_{l} p \), \( \log_{m} p \), and \( \log_{n} p \) are in AP, we can express this condition mathematically: \[ 2 \log_{m} p = \log_{l} p + \log_{n} p \] 2. **Using the Change of Base Formula**: We can rewrite the logarithms using the change of base formula: \[ \log_{l} p = \frac{\log p}{\log l}, \quad \log_{m} p = \frac{\log p}{\log m}, \quad \log_{n} p = \frac{\log p}{\log n} \] 3. **Substituting into the AP Condition**: Substitute these expressions into the AP condition: \[ 2 \left(\frac{\log p}{\log m}\right) = \frac{\log p}{\log l} + \frac{\log p}{\log n} \] 4. **Eliminating \(\log p\)**: Assuming \( \log p \neq 0 \), we can divide both sides by \( \log p \): \[ 2 \cdot \frac{1}{\log m} = \frac{1}{\log l} + \frac{1}{\log n} \] 5. **Finding a Common Denominator**: The common denominator for the right-hand side is \( \log l \cdot \log n \): \[ 2 \cdot \frac{\log l \cdot \log n}{\log m \cdot \log l \cdot \log n} = \frac{\log n + \log l}{\log l \cdot \log n} \] 6. **Cross Multiplying**: Cross-multiplying gives: \[ 2 \log l \cdot \log n = \log n + \log l \] 7. **Rearranging the Equation**: Rearranging the equation leads to: \[ 2 \log l \cdot \log n - \log n - \log l = 0 \] This can be factored as: \[ (\log l - 1)(\log n - 1) = 0 \] 8. **Solving for \( \log l \) and \( \log n \)**: This implies either \( \log l = 1 \) or \( \log n = 1 \). Thus, we can conclude that: \[ l = e \quad \text{or} \quad n = e \] 9. **Finding \( (ln)^{\log_{l} m} \)**: Now, we need to compute \( (ln)^{\log_{l} m} \): \[ (ln)^{\log_{l} m} = (e \cdot n)^{\log_{l} m} \] Since \( l = e \): \[ (en)^{\log_{e} m} = (en)^{\frac{\log m}{\log e}} = (en)^{\log m} \] 10. **Final Expression**: Therefore, we can simplify this to: \[ n^{\log m} \cdot e^{\log m} = n^{\log m} \cdot m \] ### Final Answer: Thus, the final expression is: \[ (ln)^{\log_{l} m} = n^{\log m} \]

To solve the problem, we need to show that if \( \log_{l} p \), \( \log_{m} p \), and \( \log_{n} p \) are in arithmetic progression (AP), then \( (ln)^{\log_{l} m} = ? \). ### Step-by-step Solution: 1. **Understanding the Arithmetic Progression**: Since \( \log_{l} p \), \( \log_{m} p \), and \( \log_{n} p \) are in AP, we can express this condition mathematically: \[ 2 \log_{m} p = \log_{l} p + \log_{n} p ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    PEARSON IIT JEE FOUNDATION|Exercise Level 2|15 Videos
  • LINEAR PROGRAMMING

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|10 Videos
  • MATHEMATICAL INDUCTION AND BIONOMIAL THEOREM

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 3|15 Videos

Similar Questions

Explore conceptually related problems

If log_(a)x,log_(b)x,log_(c)x are in A.P then c^(2)=

If log2,log(2^(n)-1) and log(2^(n)+3) are in A.P.then n=

Suppose a,b,c gt 1 and n in N, n ge 2 . If log_(a)(n),log_(b)(n),log_(c )(n) are in A.P., then log_(a)b+log_(c )b =

If log_(2)p + log_(8)p + log_(32)p =(46)/(5) , then p =

If log_(10) 11 = p , then log_(10)((1)/(110)) = ______.