Home
Class 12
MATHS
Solve Sin^(1)"" (3x)/5 + Sin^(-1)""(4x)/...

Solve `Sin^(1)"" (3x)/5 + Sin^(-1)""(4x)/5 = Sin^(-1)x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equations: sin^(-1)((3x)/5)+sin^(-1)((4x)/5)=sin^(-1)x sin^(-1)6x+sin^(-1)6sqrt(3)x=pi/2

Solve the following equations: sin^(-1)(3x)/(5)+sin^(-1)(4x)/(5)=sin^(-1)xsin^(-1)6x+sin^(-1)6sqrt(3)x=(pi)/(2)

Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy sin^(-1)((3x)/(5))+sin^(-1)((4x)/(5))=sin^(-1)x is equal to :

The total number of solutions of the equation sin^(-1)((3)/(5)x)+sin^(-1)((4)/(5)x)=sin^(-1)x

Solve Sin^(-1)x +Sin^(-1)2x = (pi)/3 .

Number of solution of equation Sin^-1((3x)/5)+Sin^-1((4x)/5)=Sin^-1x , x in [-1,1] is

sin^(-1)((3x)/5)+sin^(-1)((4x)/5)=sin^(-1)x , then roots of the equation are- a. 0 b. 1 c. -1\ d. -2