Home
Class 12
MATHS
For the curve f(x)=x^(5)-5x^(4)+5x^(3)-1...

For the curve `f(x)=x^(5)-5x^(4)+5x^(3)-1`; local maximum exist at `x=alpha` ,local minimum exist at `x=beta` if `x=gamma` is a point of inflection then `alpha+beta+gamma` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha beta gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha beta gamma are roots of x^(3)+x^(2)-5x-1=0 then alpha + beta + gamma is equal to

If alpha ,beta ,gamma are roots of x^(3)+x^(2)-5x-1=0 then [alpha] + [beta] +[ gamma ] is equal to

If alpha,beta,gamma are the roots of x^(3)+3x+3=0 then alpha^(5)+beta^(5)+gamma^(5)=

If alpha, beta, gamma are the zeros of the polynomial 2x^(3)+ x^(2) - 13 x+ 6 then alpha beta gamma = ?

if alpha,beta,gamma are the roots of 2x^(3)-5x^(2)-14x+8=0 then find alpha+beta+gamma

lf, cos (x + alpha) cos (x + beta), cos (x + gamma) sin (x + alpha), sin (x + beta), sin (x + gamma) sin (beta + gamma), sin ( gamma-alpha), sin (alpha-beta) then (Given alpha! = beta! = gamma), sin (alpha-beta)