Home
Class 12
MATHS
Let z1 and z2 be the roots of z^2+ az +b...

Let `z_1 and z_2` be the roots of `z^2+ az +b=0`. If the origin, `z_1 and z_2` from an equilateral triangle, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(1) and z_(2) be the roots of z ^(2)+az+b=0 . If the origin, z_(1) and z_(2) form an equilateral triangle. Then-

If z_1 and z_2 are the roots of the equation z^2+az+12=0 and z_1 , z_2 forms an equilateral triangle with origin. Find absa

Let z_1,z_2 be the roots of the equation z^2+az+12=0 and z_1, z_2 form an equilateral triangle with origin. Then, the value of absa is ________ .

z_1a n dz_2 are the roots of 3z^2+3z+b=0. if O(0),(z_1),(z_2) form an equilateral triangle, then find the value of bdot

z_1a n dz_2 are the roots of 3z^2+3z+b=0. if O(0),(z_1),(z_2) form an equilateral triangle, then find the value of bdot

z_1a n dz_2 are the roots of 3z^2+3z+b=0. if O(0),(z_1),(z_2) form an equilateral triangle, then find the value of bdot

z_1a n dz_2 are the roots of 3z^2+3z+b=0. if O(0),(z_1),(z_2) form an equilateral triangle, then find the value of bdot

z_(1)andz_(2) are the roots of 3z^(2)+3z+b=0. if O(0),(z_(1)),(z_(2)) form an equilateral triangle,then find the value of b .