Home
Class 10
MATHS
If G be the centroid of a triangle ABC, ...

If G be the centroid of a triangle ABC, prove that, `AB^2 + BC^2 + CA^2 = 3(GA^2 + GB^2 + GC^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If G be the centroid of a triangle ABC, prove that, AB^2+BC^2+CA^2=3(GA^2+GB^2+GC^2)

If G be the centroid of the Delta ABC , then prove that AB^2+BC^2+CA^2=3(GA^2+GB^2+GC^2)

If G is the centroid of a triangle ABC, prove that vec GA+vec GB+vec GC=vec 0

If G be the centroid of the Delta ABC, then prove that AB^(2)+BC^(2)+CA^(2)=3(GA^(2)+GB^(2)+GC^(2))

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC) = 0

If G be the centroid of the DeltaABC and O be any other point in theplane of the triangle ABC , then prove that: OA^2 +OB^2 +OC^2=GA^2 +GB^2 +GB^2 + GC^2 + 3GO^2

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC)=vec(0) .

If G be the centroid of the triangle ABC, then prove that vec(GA)+vec(GB)+vec(GC)=vec(0).

G is the centroid of a triangle ABC, show that : vec(GA)+vec(GB)+vec(GC)=vec0 .