Home
Class 11
MATHS
Let g(x) be the inverse of an invertibl...

Let `g(x)` be the inverse of an invertible function `f(x),` which is differentiable for all real `xdot` Then `g^('')(f(x))` equals. (a)`-(f^('')(x))/((f^'(x))^3)` (b) `(f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x))` (c)`(f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^(f(x)) equals. -(f^(x))/((f^'(x))^3) (b) (f^(prime)(x)f^(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (f^(prime)(x)f^(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

Let g(x) be the inverse of an invertible function f(x) which is differentiable at x=c . Then g^(prime)(f(x)) equal.

Let g(x) be the inverse of an invertible function f(x) which is differentiable at x=c . Then g^(prime)(f(x)) equal. (a) f^(prime)(c) (b) 1/(f^(prime)(c)) (c) f(c) (d) none of these

Let g(x) be the inverse of an invertible function f(x) which is differentiable at x=c . Then g^(prime)(f(x)) equal. (a) f^(prime)(c) (b) 1/(f^(prime)(c)) (c) f(c) (d) none of these

Let g(x) be the inverse of an invertible function f(x) which is differentiable at x=c . Then g^(prime)(f(x)) equal. (a) f^(prime)(c) (b) 1/(f^(prime)(c)) (c) f(c) (d) none of these

Let g(x) be the inverse of an invertible function f(x) which is differentiable at x=c . Then g^(prime)(f(x)) equal. (a) f^(prime)(c) (b) 1/(f^(prime)(c)) (c) f(c) (d) none of these

Let g(x) be the inverse of an invertible function f(x) which is derivable at x=3 . If f(3)=9 and f^(prime)(3)=9 , write the value of g^(prime)(9) .

If differentiable function f(x) in inverse of g(x) then f^(g(x)) is equal to (g^(x))/((g^(prime)(x))^3) 2. 0 3. (g^(x))/((g^(prime)(x))^2) 4. 1

int \ {f(x)*g^(prime)(x)-f^(prime)(x)g(x))/(f(x)*g(x)){logg(x)-logf(x)} \ dx

Suppose fa n dg are functions having second derivative f'' and g' ' everywhere. If f(x)dotg(x)=1 for all xa n df^(prime)a n dg' are never zero, then (f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x))e q u a l (a)(-2f^(prime)(x))/f (b) (2g^(prime)(x))/(g(x)) (c)(-f^(prime)(x))/(f(x)) (d) (2f^(prime)(x))/(f(x))