Home
Class 14
MATHS
If x is the length of a median of an equ...

If `x` is the length of a median of an equilateral triangle, then its area is (a) `x^2` (b) `1/2x^2` (c) `(sqrt(3))/2\ x^2` (d) `(sqrt(3))/3\ x^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x is the length of a median of an equilateral triangle,then its area is (a) x^(2)( b) (1)/(2)x^(2)(c)(sqrt(3))/(2)backslash x^(2)(d)(sqrt(3))/(3)backslash x^(2)

If the length of median of an equilateral triangle is x cm then its area is a. x^2 , b. (sqrt3/2)x^2 c. x^2/sqrt3 d. x^2/2

If 4\ cos^(-1)x+sin^(-1)x=pi , then the value of x is (a) 3/2 (b) 1/(sqrt(2)) (c) (sqrt(3))/2 (d) 2/(sqrt(3))

The equation of the base of an equilateral triangle ABC is x+y=2 and the vertex is (2,-1). The area of the triangle ABC is: (sqrt(2))/(6) (b) (sqrt(3))/(6) (c) (sqrt(3))/(8) (d) None of these

An equilateral triangle S A B is inscribed in the parabola y^2=4a x having its focus at Sdot If chord A B lies towards the left of S , then the side length of this triangle is 2a(2-sqrt(3)) (b) 4a(2-sqrt(3)) a(2-sqrt(3)) (d) 8a(2-sqrt(3))

Let g(x) be a function defined on [-1,1]dot If the area of the equilateral triangle with two of its vertices at (0,0) a n d (x ,g(x)) is (a) (sqrt(3))/4 , then the function g(x) is (b) g(x)=+-sqrt(1-x^2) (c) g(x)=sqrt(1-x^2) (d) g(x)=-sqrt(1-x^2) g(x)=sqrt(1+x^2)

Let g(x) be a function defined on [-1,1]dot If the area of the equilateral triangle with two of its vertices at (0,0) a n d (x ,g(x)) is (a) (sqrt(3))/4 , then the function g(x) is (b) g(x)=+-sqrt(1-x^2) (c) g(x)=sqrt(1-x^2) (d) g(x)=-sqrt(1-x^2) g(x)=sqrt(1+x^2)

Let g(x) be a function defined on [-1,1] .If the area of the equilateral triangle with two of its vertices at (0,0) a n d(x,g(x)) is (a) (sqrt(3))/(4) then the function g(x) is (b) g(x)=+-sqrt(1-x^(2))(cx)=sqrt(1-x^(2))(d)g(x)=-sqrt(1-x^(2))g(x)=sqrt(1+x^(2))(d)

If the equation of base of an equilateral triangle is 2x-y=1 and the vertex is (-1,2), then the length of the sides of the triangle is sqrt((20)/(3)) (b) (2)/(sqrt(15))sqrt((8)/(15)) (d) sqrt((15)/(2))