Home
Class 12
MATHS
Let d/(dx)F(x)=((e^(sinx))/x),x > 0...

Let `d/(dx)F(x)=((e^(sinx))/x),x > 0.` If `int_1^4 3/x e^sin (x^3)dx=F(k)-F(1),` then one of the possible values of `k ,` is: (a)`15` (b) `16 ` (c)` 63` (d) ` 64`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    RESONANCE DPP|Exercise All Questions|6 Videos
  • BOARD PAPER SOLUTIONS

    RESONANCE DPP|Exercise All Questions|70 Videos

Similar Questions

Explore conceptually related problems

Let (d)/(dx)(F(x))=(e^(sin x))/(x),x>0. If int_(1)^(4)2(e^(sin(x^(2))))/(x)dx=F(k)-F(1), then possible value of k is:

int[(d)/(dx)f(x)]dx=

Theorem: (d)/(dx)(int f(x)dx=f(x)

If f(x)=x+1, then write the value of (d)/(dx)(fof)(x)

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=