Home
Class 11
MATHS
Prove that : (i) sqrt(i)= (1+i)/(sqrt...

Prove that :
(i) `sqrt(i)= (1+i)/(sqrt(2))`
(ii) `sqrt(-i)=(1- i)/(sqrt(2))`
`sqrt(i)+sqrt(-i)=sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

sqrt(-i) = (1-i)/sqrt2

(iii) (1+i)/(sqrt(2))=sqrt(i)

(sqrt(3)-i sqrt(2))/(2sqrt(3)-i sqrt(2))

(i)1/sqrt(2)+sqrt(3)+1/sqrt(2)

( (sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3)) )/( (sqrt(3)+i sqrt(2))+(sqrt(3)-i sqrt(2)) )

((3+i sqrt(3))(3-i sqrt(3)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

(5+sqrt(2)i)/(1-2sqrt(i))