Home
Class 11
MATHS
If S(n)=sum(r =0)^(n)(r^(2)+r+1).r! then...

If `S_(n)=sum_(r =0)^(n)(r^(2)+r+1).r!` then which is/are correct

Promotional Banner

Similar Questions

Explore conceptually related problems

S_(n)=sum_(r=1)^(n)(r)/(1.3.5.7......(2r+1)) then

If S_(n)=sum_(r=1)^(n)(2r+1)/(r^(4)+2r^(3)+r^(2)), then S_(10) is equal to

Let t_(r)=r! and S_(n)=sum_(r=1)^(n)t_(r), (n>10) then remainder when S_(n) is divided by 24 is:

If (1-x^(2))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(2n-r), then a_(r) is equal to ^(n)C_(r) b.^(n)C_(r)3^(r) c.^(2n)C_(r) d.^(n)C_(r)2^(r)