Home
Class 11
MATHS
If any triangle A B C , that: (asin(B-C...

If any triangle `A B C` , that: `(asin(B-C))/(b^2-c^2)=(bsin(C-A))/(c^2-a^2)=(csin(A-B))/(a^2-b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If any triangle ABC, that: (a sin(B-C))/(b^(2)-c^(2))=(b sin(C-A))/(c^(2)-a^(2))=(csin(A-B))/(a^(2)-b^(2))

In a DeltaABC (bsin(C-A))/(c^(2)-a^(2))+(csin(A-B))/(a^(2)-b^(2))=

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In triangleABC, (asin(B-C))/(b^(2)-c^(2))=

In triangleABC , the expression (b^(2)-c^(2))/(asin(B-C)) + (c^(2)-a^2)/(bsin(C-A)) +(a^(2)-b^(2))/(csin(A-B)) is equal to

In any triangle ABC, show that: 2a sin((B)/(2))sin((C)/(2))=(b+c-a)sin((A)/(2))

In any triangle ABC,show that: 2a cos((B)/(2))cos((C)/(2))=(a+b+c)sin((A)/(2))

If any triangle ABC, that: (b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2))/(cos C+cos A)+(a^(2)-b^(2))/(cos A+cos B)=0