Home
Class 7
MATHS
3x^(2)+x(x+2)-3x(2x+1)...

`3x^(2)+x(x+2)-3x(2x+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the HCF and LCM of the following polynomials (x+2)^(2)(x-3)^(2)(x+1)^(2),(x+1)^(3)(x+2)^(3)(x-3)

Simplify: (x^(3)-2x^(2)+3x-4)(x-1)-(2x-3)(x^(2)-x+1)

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

[[3x^(2),3x,1x^(2)+2x,2x+1,12x+1,x+2,1]]=(x-1)^(3)

If |{:(x^(2) +x , 3x - 1 , -x + 3),(2x +1 , 2 + x^(2) , x^(3) - 3),(x - 3, x^(2) + 4, 3x):}| = a_(0) + a_(1) x + a_(2) x^(2) + .... + x_(7) x^(7), then the value of a_(0) is

Simplify : (x^(2)+1)/(x^(2)+3x+2)-(x^(2)-x)/(x^(2)+3x+2)

underset(x to oo)lim (3x^(2)+5x+2)/(2x^(2)-3x+1)=

x ^ (2) + 2x + 3x = 1

Evaluate the following limit: (lim)_(x rarr1)(x^(3)+3x^(2)-6x+2)/(x^(3)+3x^(2)-3x-1)

f(x)={[(8)/(pi)tan^(-1)(-|x|+3),|x|>2,[(3x^(2)-|x|+3)/(x^(2)+1)],|x|<=2 Number of integers in the range of f(x) is ]]|x|<=2