Home
Class 11
MATHS
If z1, z2, z3, z4 are the roots of equat...

If `z_1, z_2, z_3, z_4` are the roots of equation `z^4+z^3+z^2+z+1=0`, then `prod_(i=1)^4(z_i+2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

let z_1,z_2,z_3 and z_4 be the roots of the equation z^4 + z^3 +2=0 , then the value of prod_(r=1)^(4) (2z_r+1) is equal to :

let z_1,z_2,z_3 and z_4 be the roots of the equation z^4 + z^3 +2=0 , then the value of prod_(r=1)^(4) (2z_r+1) is equal to :

If z_(1),z_(2),z_(3) andz_(4) are the roots of the equation z^(4)=1, the value of sum_(i=1)^(4)(z_i)^(3) is

If z_(1),z_(2),z_(3),z_(4) are the roots of the equation z^(4)+z^(3)+z^(2)+z+1=0, then the least value of [|z_(1)+z_(2)|]+1 is (where [.] is GIF.)

If z_(1),z_(2),z_(3) andz_(4) are the roots of the equation z^(4)=1, the value of sum_(i=1)^(4)z_i^(3) is

If z_(1),z_(2),z_(3) andz_(4) are the roots of the equation z^(4)=1, the value of sum_(i=1)^(4)z_i^(3) is

If z_(1),z_(2),z_(3) andz_(4) are the roots of the equation z^(4)=1, the value of sum_(i=1)^(4)zi^(3) is

If z_(1),z_(2),z_(3),z_(4) are roots of the equation a_(0)z^(4)+a_(1)z^(3)+a_(2)z^(2)+a_(3)z+a_(4)=0, where a_(0),a_(1),a_(2),a_(3) and a_(4) are real,then

If z_1, z_2, z_3, z_4 are the affixes of four point in the Argand plane, z is the affix of a point such that |z-z_1|=|z-z_2|=|z-z_3|=|z-z_4| , then z_1, z_2, z_3, z_4 are