Home
Class 12
MATHS
3tan^6(pi/18)-27tan^4(pi/18)+33tan^2(pi/...

`3tan^6(pi/18)-27tan^4(pi/18)+33tan^2(pi/18)` equals -

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^6(pi/9)-33tan^4(pi/9)+27tan^2(pi/9) is equal to

tan^6(pi/9)-33tan^4(pi/9)+27tan^2(pi/9) is equal to (a)0 (b) sqrt3 (c) 3(d)9

tan^6(pi/9)-33tan^4(pi/9)+27tan^2(pi/9) is equal to (a)0 (b) sqrt3 (c) 3(d)9

The value of (tan pi)/(18)*(tan(3 pi))/(18)+(tan(3 pi))/(18)*(tan(5 pi))/(18)+(tan(pi))/(18)*(tan(5 pi))/(18) is equal to (1)0(3)sqrt(3)(2)1(4)-1

tan((2pi)/5)-tan(pi/15)-sqrt3tan((2pi)/5)tan(pi/15) is equal to

3tan^6 10^@-27tan^4 10^@+33tan^2 10^@=

The numerical value of tan(pi/3)+2tan((2pi)/3)+4tan((4pi)/3) is equal to

tan^6pi/9-33tan^4pi/9+27tan^2pi/9 is equal to (a) 0 (b) sqrt(3) (c) 3 (d) 9

Prove that : tan^2 (pi/4)+tan^2(pi/4)+tan^2(pi/3)=13/3

tan^(6)""pi/9 - 33tan^(4)""pi/9 + 27tan^(2)""pi/9 equals :