Home
Class 9
MATHS
Prove that: (a+b)^3=a^3+b^3+3a b(a+b)...

Prove that: `(a+b)^3=a^3+b^3+3a b(a+b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (a-b)^(3)=a^(3)-b^(3)-3ab(a-b)

Prove that: (a+b)^(3)=a^(3)+b^(3)+3ab(a+b)

Prove that (a+b+c)^3-a^3-b^3-c^3=3(a+b)(b+c)(c+a)

Prove that (a+b+c)^3 - a^3-b^3-c^3 = 3(a+b)(b+c)(c+a).

Prove that (a+b+c)^3-(a^3+b^3+c^3)=3(b+c)(c+a)(a+b)

Prove that : a^3+b^3+c^3-3a b c=1/2(a+b+c)"{"a-b")"^2+(b-c)^2+(c-a)^2}

Prove that : a^3+b^3+c^3-3a b c=1/2(a+b+c)"{"a-b")"^2+(b-c)^2+(c-a)^2}

Prove that (a+b+c)^(3) =a^(3)+b^(3)+c^(3)+3(b+c) (c+a) (a+b)

Prove that (b+c)^3+(c+a)^3+(a+b)^3-3(b+c)(c+a)(a+b) =2(a^3+b^3+c^3-3abc)

Prove that a^3+b^3+c^3-3abc=1/2(a+b+c){(a-b)^2+(b-c)^2+(c-a)^2}