Home
Class 10
MATHS
cos^(2)20^(@)+cos^(2)70^(@) is equal to ...

`cos^(2)20^(@)+cos^(2)70^(@)` is equal to :

A

`-1`

B

0

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^2(20^\circ) + \cos^2(70^\circ) \), we can utilize the trigonometric identity that relates cosine and sine. ### Step-by-Step Solution: 1. **Write the expression**: \[ \cos^2(20^\circ) + \cos^2(70^\circ) \] 2. **Use the identity for cosine**: We know that \( \cos(90^\circ - \theta) = \sin(\theta) \). Therefore, we can rewrite \( \cos(70^\circ) \): \[ \cos(70^\circ) = \sin(20^\circ) \] Hence, \( \cos^2(70^\circ) = \sin^2(20^\circ) \). 3. **Substitute into the expression**: Now, we can substitute \( \cos^2(70^\circ) \) in our original expression: \[ \cos^2(20^\circ) + \sin^2(20^\circ) \] 4. **Apply the Pythagorean identity**: According to the Pythagorean identity, \( \cos^2(\theta) + \sin^2(\theta) = 1 \): \[ \cos^2(20^\circ) + \sin^2(20^\circ) = 1 \] 5. **Final result**: Therefore, the value of \( \cos^2(20^\circ) + \cos^2(70^\circ) \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise TRUE OR FALSE|4 Videos
  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise VERY SHORT ANSWER TYPE QUESTIONS|7 Videos
  • CO-ORDINATE GEOMETRY

    MBD -HARYANA BOARD|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - D (SECTION - D)|4 Videos

Similar Questions

Explore conceptually related problems

cos^(2)5^(@) +cos^(2)10^(@) + cos^(2) 15^(@) +…..+cos^(2) 85^(@) + cos^(2) 90^(@) is equal to

What is sin^(2)20^(@)+sin^(2)70^(@) equal to ?

The value of cos 20^(@) cos 40^(@)cos 60^(@) cos 80^(@) is equal to

The value of cos20^(@)cos100^(@)+cos100^(@)cos140^(@)-cos140^(@)cos200^(@) is equal to

(sin^(2) 20^(@) + sin^(2) 70^(@))/(cos^(2) 20^(@) + cos^(2) 70^(@)) + [ (sin (90^(@) - theta).sin theta)/(tan theta) + (cos (90^(@) - theta).cos theta)/(cot theta) ] .

cot70^(@)+4cos70^(@)

(cos 20^(@)+8 sin 70^(@) sin 50^(@) sin 10^(@))/( sin^(2)80^(@)) is equal to

cos1^(@)*cos2^(@)*cos3^(@).........cos179^(@) is equal to :

The value of cos^2 5^@ + cos^2 10^@ + cos^2 15^@ + cos^2 20^@+ cos^2 70^@ + cos^2 75^@+ cos^2 80^@ + cos^2 85^@ is equal to