Home
Class 10
MATHS
Find in the blank. tan^(2)theta=.........

Find in the blank.
`tan^(2)theta=.......-1`.

A

`cot^(2)theta`

B

`sec^(2)theta`

C

`"cosec"^(2)theta`

D

`cos^(2)theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^2 \theta = \ldots - 1 \), we can use the trigonometric identity that relates tangent and secant. ### Step-by-Step Solution: 1. **Recall the Identity**: We know the trigonometric identity: \[ \sec^2 \theta = 1 + \tan^2 \theta \] 2. **Rearranging the Identity**: From the identity, we can rearrange it to express \( \tan^2 \theta \): \[ \tan^2 \theta = \sec^2 \theta - 1 \] 3. **Fill in the Blank**: Thus, we can fill in the blank in the original equation: \[ \tan^2 \theta = \sec^2 \theta - 1 \] 4. **Final Answer**: Therefore, the answer to the question is: \[ \tan^2 \theta = \sec^2 \theta - 1 \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise TRUE OR FALSE|4 Videos
  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise VERY SHORT ANSWER TYPE QUESTIONS|7 Videos
  • CO-ORDINATE GEOMETRY

    MBD -HARYANA BOARD|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - D (SECTION - D)|4 Videos

Similar Questions

Explore conceptually related problems

If "cosec"theta=sqrt(2) ,then find the value of (tan^(2)theta-1) .

If costheta=(1)/(sqrt(2)) ,then find the value of (tan^(2)theta+1) .

Find the principal value of "tan"^(2)theta=1 .

1+tan theta+tan^(2) theta+tan^(3) theta+......... oo = (sqrt (3) +1)/(2), | tan theta | <1, where *0

Find the value of (1+tan^(2)theta)/(1+cot^(2)theta)

Find the value of (1)/(1+tan^(2)theta)+(1)/(1+cot^(2)theta)

If tan theta+(1)/(tan theta)=2, find the value of tan^(2)theta+(1)/(tan^(2)theta)

If "tan"theta+"cot"theta=6 , then find the value of "tan"^(2)theta+"cot"^(2)theta .

If tan theta=(1)/(sqrt(3)), then find the value of (2tan theta)/(1-tan^(2)theta)

If tantheta.tan2theta=1 , then find the value of sin^(2)2theta+tan^(2)2theta .