Home
Class 10
MATHS
If 15 cotA=8, the value of sinA is :...

If 15 `cotA=8`, the value of `sinA` is :

A

`(8)/(17)`

B

`(15)/(17)`

C

`(17)/(8)`

D

`(17)/(15)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( 15 \cot A = 8 \) and we need to find the value of \( \sin A \), we can follow these steps: ### Step 1: Express \( \cot A \) in terms of known values Given: \[ 15 \cot A = 8 \] We can rearrange this to find \( \cot A \): \[ \cot A = \frac{8}{15} \] ### Step 2: Use the identity of \( \cot A \) Recall that: \[ \cot A = \frac{\cos A}{\sin A} \] From this, we can express \( \cos A \) in terms of \( \sin A \): \[ \frac{\cos A}{\sin A} = \frac{8}{15} \] This implies: \[ \cos A = \frac{8}{15} \sin A \] ### Step 3: Use the Pythagorean identity We know that: \[ \sin^2 A + \cos^2 A = 1 \] Substituting \( \cos A \) from the previous step: \[ \sin^2 A + \left(\frac{8}{15} \sin A\right)^2 = 1 \] This simplifies to: \[ \sin^2 A + \frac{64}{225} \sin^2 A = 1 \] Combining the terms gives: \[ \left(1 + \frac{64}{225}\right) \sin^2 A = 1 \] ### Step 4: Simplify the equation Convert \( 1 \) to a fraction with a denominator of 225: \[ \frac{225}{225} + \frac{64}{225} = \frac{289}{225} \] Thus, we have: \[ \frac{289}{225} \sin^2 A = 1 \] ### Step 5: Solve for \( \sin^2 A \) To isolate \( \sin^2 A \): \[ \sin^2 A = \frac{225}{289} \] ### Step 6: Take the square root to find \( \sin A \) Taking the square root of both sides: \[ \sin A = \sqrt{\frac{225}{289}} = \frac{15}{17} \] ### Conclusion Thus, the value of \( \sin A \) is: \[ \sin A = \frac{15}{17} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise TRUE OR FALSE|4 Videos
  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise VERY SHORT ANSWER TYPE QUESTIONS|7 Videos
  • CO-ORDINATE GEOMETRY

    MBD -HARYANA BOARD|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - D (SECTION - D)|4 Videos

Similar Questions

Explore conceptually related problems

If 15 cotA = 8 , then find the value of cosec A .

If cosecA+cotA=x , then value of x is

If a DeltaABC , the value of sinA+sinB+sinC is

If cotA=(7)/(24) , then the value of sin A is :

If sinA sinB sinC+cosAcosB=1, then the value of sinC is

If (1)/((tanA+cotA))=x , the the value of x is

If sinA=cosA,then find the value of sin 2A.

If 3tanA+4=0 , then the value of 2cotA-5cosA+sinA is equal to