Home
Class 10
MATHS
The value of cos38^(@)cos52^(@)-sin38^(@...

The value of `cos38^(@)cos52^(@)-sin38^(@)sin52^(@)` is :

A

`-1`

B

1

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos 38^\circ \cos 52^\circ - \sin 38^\circ \sin 52^\circ \), we can use the cosine angle addition formula. ### Step-by-Step Solution: 1. **Identify the expression**: The expression we have is \( \cos 38^\circ \cos 52^\circ - \sin 38^\circ \sin 52^\circ \). 2. **Use the cosine angle addition formula**: Recall that the cosine of the sum of two angles can be expressed as: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] In our case, we can let \( a = 38^\circ \) and \( b = 52^\circ \). 3. **Apply the formula**: According to the formula: \[ \cos(38^\circ + 52^\circ) = \cos 38^\circ \cos 52^\circ - \sin 38^\circ \sin 52^\circ \] Thus, we can rewrite our expression as: \[ \cos(38^\circ + 52^\circ) = \cos(90^\circ) \] 4. **Calculate \( \cos(90^\circ) \)**: The value of \( \cos(90^\circ) \) is: \[ \cos(90^\circ) = 0 \] 5. **Final answer**: Therefore, the value of the original expression \( \cos 38^\circ \cos 52^\circ - \sin 38^\circ \sin 52^\circ \) is: \[ 0 \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise TRUE OR FALSE|4 Videos
  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise VERY SHORT ANSWER TYPE QUESTIONS|7 Videos
  • CO-ORDINATE GEOMETRY

    MBD -HARYANA BOARD|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - D (SECTION - D)|4 Videos

Similar Questions

Explore conceptually related problems

cos38^(@)cos52^(@)-sin38^(@)sin52^(@)=0

Evaluate : cos 38^@ cos 52^@ - sin 38^@ sin 52^@ .

The value of (cos^(n)38^(@)-cot^(n)52^(@))/(sin^(n)52^(@)-tan^(n)38^(@))=?

The value of cos52^(@)+cos68^(@)+cos172^(@)

cos 38^(@) cos 8^(@) + sin 38^(@)sin 8^(@) is equal to

The value of cos52^(@)+cos68^(@)+cos172^(@) is

sin38^(@)+sin22^(@)=sin82^(@)

The value of (sin24^(@)cos6^(@)-sin6^(@)sin66^(@))/(sin21^(@)cos39^(@)-cos51^(@)sin69^(@)) is

The value of sin600^(@)cos330^(@)+cos120^(@)sin150^(@) is

(2sin38^(@))/(cos52^(@))