Home
Class 10
MATHS
(2tan60^(@))/(1+tan^(2)60^(@)) is equal ...

`(2tan60^(@))/(1+tan^(2)60^(@))` is equal to :

A

`sin60^(@)`

B

`cos60^(@)`

C

`tan30^(@)`

D

`sin 30^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((2\tan 60^\circ)/(1+\tan^2 60^\circ)\), we can follow these steps: ### Step 1: Find \(\tan 60^\circ\) We know that: \[ \tan 60^\circ = \sqrt{3} \] ### Step 2: Substitute \(\tan 60^\circ\) into the expression Now, we substitute \(\tan 60^\circ\) into the expression: \[ \frac{2\tan 60^\circ}{1+\tan^2 60^\circ} = \frac{2\sqrt{3}}{1+\tan^2 60^\circ} \] ### Step 3: Calculate \(\tan^2 60^\circ\) Next, we calculate \(\tan^2 60^\circ\): \[ \tan^2 60^\circ = (\sqrt{3})^2 = 3 \] ### Step 4: Substitute \(\tan^2 60^\circ\) into the expression Now, substitute \(\tan^2 60^\circ\) back into the expression: \[ \frac{2\sqrt{3}}{1+3} = \frac{2\sqrt{3}}{4} \] ### Step 5: Simplify the expression Now we simplify: \[ \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \] ### Conclusion Thus, the value of \(\frac{2\tan 60^\circ}{1+\tan^2 60^\circ}\) is: \[ \frac{\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise TRUE OR FALSE|4 Videos
  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise VERY SHORT ANSWER TYPE QUESTIONS|7 Videos
  • CO-ORDINATE GEOMETRY

    MBD -HARYANA BOARD|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - D (SECTION - D)|4 Videos

Similar Questions

Explore conceptually related problems

If (2tan60^(@))/(1+tan^(2)60^(@))=cos(X) , then the value of X is

The value of sin^(2)30^(@).cos^(2)45^(@)+2tan^(2)30^(@)-sec^(2)60^(@) is equal to :

(1+tan^(2)60^(@))^(2)=

If (1-tan^(2)60^(@))/(1+tan^(2)60^(@))=cosX , then the value of X is ___________

(tan 60^(@) - tan 30^(@))/(1 + tan 60^(@) tan 30^(@)) equal

Value of (2 tan^(2) 60^(@))/(1 + tan^(2) 30^(@)) = _________.

(2tan30o)/(1+tan^2 30o) is equal to sin60o (b) cos60o (c) tan60o (d) sin30o

(2tan30o)/(1-tan^2 30o) is equal to cos60o (b) sin60o (c) tan60o (d) sin30o

What is (cos^(2)(45^(@)+theta)+cos^(2)(45^(@)-theta))/(tan(60^(@)+theta)tan(30^(@)-theta)) equal to ?

Find the value of (tan30^(@)+tan60^(@))/(1-tan30^(@)tan60^(@)) and tan90^(@) , what do you observe ?