Home
Class 10
MATHS
(1+tan theta+sec theta)(1+cot theta-"cos...

`(1+tan theta+sec theta)(1+cot theta-"cosec "theta)` is equal to :

A

0

B

`-1`

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)\), we will follow these steps: ### Step 1: Rewrite the trigonometric functions in terms of sine and cosine We know that: - \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) - \(\sec \theta = \frac{1}{\cos \theta}\) - \(\cot \theta = \frac{\cos \theta}{\sin \theta}\) - \(\csc \theta = \frac{1}{\sin \theta}\) So, we rewrite the expression: \[ (1 + \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta})(1 + \frac{\cos \theta}{\sin \theta} - \frac{1}{\sin \theta}) \] ### Step 2: Simplify each bracket The first bracket becomes: \[ 1 + \frac{\sin \theta + 1}{\cos \theta} = \frac{\cos \theta + \sin \theta + 1}{\cos \theta} \] The second bracket becomes: \[ 1 + \frac{\cos \theta - 1}{\sin \theta} = \frac{\sin \theta + \cos \theta - 1}{\sin \theta} \] ### Step 3: Multiply the two simplified brackets Now we multiply the two fractions: \[ \frac{(\cos \theta + \sin \theta + 1)(\sin \theta + \cos \theta - 1)}{\cos \theta \sin \theta} \] ### Step 4: Expand the numerator Using the distributive property (FOIL method), we expand: \[ (\cos \theta + \sin \theta + 1)(\sin \theta + \cos \theta - 1) = (\cos \theta + \sin \theta)(\sin \theta + \cos \theta) + (\cos \theta + \sin \theta)(-1) \] This simplifies to: \[ (\cos^2 \theta + \sin^2 \theta + 2\sin \theta \cos \theta) - (\cos \theta + \sin \theta) \] ### Step 5: Use the Pythagorean identity Using the identity \(\cos^2 \theta + \sin^2 \theta = 1\): \[ 1 + 2\sin \theta \cos \theta - \cos \theta - \sin \theta \] ### Step 6: Combine like terms The numerator now is: \[ (1 - 1) + 2\sin \theta \cos \theta - \cos \theta - \sin \theta = 2\sin \theta \cos \theta - \cos \theta - \sin \theta \] ### Step 7: Factor the numerator We can factor out \(\sin \theta + \cos \theta\): \[ = (2\sin \theta \cos \theta - (\sin \theta + \cos \theta)) \] ### Step 8: Divide by the denominator Now we divide by the denominator: \[ \frac{2\sin \theta \cos \theta - (\sin \theta + \cos \theta)}{\cos \theta \sin \theta} \] ### Step 9: Simplify the fraction This simplifies to: \[ \frac{2\sin \theta \cos \theta}{\cos \theta \sin \theta} - \frac{\sin \theta + \cos \theta}{\cos \theta \sin \theta} \] The first term simplifies to \(2\) and the second term simplifies to \(1\). ### Final Result Thus, the final result is: \[ 2 \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise TRUE OR FALSE|4 Videos
  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise VERY SHORT ANSWER TYPE QUESTIONS|7 Videos
  • CO-ORDINATE GEOMETRY

    MBD -HARYANA BOARD|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - D (SECTION - D)|4 Videos

Similar Questions

Explore conceptually related problems

The identity (1+ tan theta - sec theta)(1+ cot theta - "cosec"theta) not equals

(2+tan^2 theta+ cot^2 theta)/(sec theta cosec theta) is equal to : (2+tan^2 theta+ cot^2 theta)/(sec theta cosec theta) का मान किसके बराबर है ?

If tan^2 theta =(1-e^2) , then sec theta+tan^3 theta "cosec" theta is equal to

What is ((sin theta +cos theta)(tan theta +cot theta))/(sec theta + cosec theta) equal to ?

" (2.) "tan theta+cot theta=sec theta cosec theta

The value of tan^2 theta + cot^2 theta - sec^2 theta cosec^2 theta is equal to: tan^2 theta + cot^2 theta -sec^2 theta cosec^2 theta का मान निम्नलिखित में से किसके बराबर होगा?