Home
Class 10
MATHS
Evalulate : "cosec "32-sec58^(@)....

Evalulate : `"cosec "32-sec58^(@)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \csc 32^\circ - \sec 58^\circ \), we can follow these steps: ### Step 1: Rewrite the secant function We know that \( \sec \theta = \frac{1}{\cos \theta} \). Thus, we can rewrite \( \sec 58^\circ \) as: \[ \sec 58^\circ = \frac{1}{\cos 58^\circ} \] ### Step 2: Use the complementary angle identity We can use the identity that states \( \cos(90^\circ - \theta) = \sin \theta \). Therefore, we can express \( \cos 58^\circ \) as: \[ \cos 58^\circ = \sin(90^\circ - 58^\circ) = \sin 32^\circ \] Thus, we can rewrite \( \sec 58^\circ \) as: \[ \sec 58^\circ = \frac{1}{\sin 32^\circ} \] ### Step 3: Rewrite the cosecant function The cosecant function is defined as \( \csc \theta = \frac{1}{\sin \theta} \). Therefore, we can express \( \csc 32^\circ \) as: \[ \csc 32^\circ = \frac{1}{\sin 32^\circ} \] ### Step 4: Substitute back into the expression Now we can substitute our expressions for \( \csc 32^\circ \) and \( \sec 58^\circ \) back into the original expression: \[ \csc 32^\circ - \sec 58^\circ = \frac{1}{\sin 32^\circ} - \frac{1}{\sin 32^\circ} \] ### Step 5: Simplify the expression Now, we can simplify the expression: \[ \frac{1}{\sin 32^\circ} - \frac{1}{\sin 32^\circ} = 0 \] ### Final Answer Thus, the value of \( \csc 32^\circ - \sec 58^\circ \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise SHORT ANSWER TYPE QUESTIONS|9 Videos
  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise LONG SHORT ANSWER TYPE QUESTIONS|8 Videos
  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise TRUE OR FALSE|4 Videos
  • CO-ORDINATE GEOMETRY

    MBD -HARYANA BOARD|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - D (SECTION - D)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate : "cosec "31^(@)-sec 59^(@) .

Evaluate : "cosec" 31^(@) - sec 59^(@)

Find the value of "cosec"70^(@)-sec20^(@)

Evaluate : (cos 45^(@))/(sec30^(@)+"cosec "30^(@))

tanalpha=2 , then the value of ("cosec"^(2)alpha-sec^(2)alpha)/("cosec"^(2)alpha+sec^(2)alpha) is

If cotθ = sqrt6 , then the value of is: (cosec^(2)θ + sec^(2)θ)/(cosec^(2)θ − sec^(2)θ) यदि cotθ = sqrt6 है तो (cosec^(2)θ + sec^(2)θ)/(cosec^(2)θ − sec^(2)θ) का मान हैः

Evaluate: (cos 58^@)/(sin 32^@)+(sin 22^@)/(cos 68^@)-(cos 38^@cosec 52^@)/(tan 18^@tan 35 ^@ tan 60^@tan 72^@tan 55^@) .

(cosec 31^@)/(sec 59^@) is equal to: (cosec 31^@)/(sec 59^@) का मान क्या होगा?

If three vectors (sec^(2)A) hati+hatj+hatk , hati+(sec^(2)B)hatj+hatk,hati+hatj+sec^(2)hatk are complnar, then the value of cosec^(2)A + cosec^(2)B+ cosec^(2)C is -

If the vectors (sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati+hatj+(sec^(2) c)hatk are coplanar, then the value of cosec^(2)A+cosec^(2)B+cosec^(2)C , is