Home
Class 10
MATHS
If tan2A=cot(A-18^(@)) where 2A is an ac...

If `tan2A=cot(A-18^(@))` where 2A is an acute angle, find the value of A.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan 2A = \cot (A - 18^\circ) \), we can follow these steps: ### Step 1: Rewrite the cotangent function We know that \( \cot \theta = \tan (90^\circ - \theta) \). Therefore, we can rewrite the equation as: \[ \tan 2A = \tan (90^\circ - (A - 18^\circ)) \] ### Step 2: Simplify the right-hand side Now simplify the right-hand side: \[ \tan 2A = \tan (90^\circ - A + 18^\circ) = \tan (108^\circ - A) \] ### Step 3: Set the angles equal Since \( \tan \theta_1 = \tan \theta_2 \) implies \( \theta_1 = \theta_2 + n \cdot 180^\circ \) (where \( n \) is an integer), we can set: \[ 2A = 108^\circ - A + n \cdot 180^\circ \] However, since \( 2A \) is an acute angle, we will consider \( n = 0 \): \[ 2A = 108^\circ - A \] ### Step 4: Solve for A Now, we can solve for \( A \): \[ 2A + A = 108^\circ \] \[ 3A = 108^\circ \] \[ A = \frac{108^\circ}{3} = 36^\circ \] ### Conclusion Thus, the value of \( A \) is: \[ \boxed{36^\circ} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise LONG SHORT ANSWER TYPE QUESTIONS|8 Videos
  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise VERY SHORT ANSWER TYPE QUESTIONS|7 Videos
  • CO-ORDINATE GEOMETRY

    MBD -HARYANA BOARD|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - D (SECTION - D)|4 Videos

Similar Questions

Explore conceptually related problems

If tan A =cot (A-18^(@)) where 2A is an acute angle , find the value of A.

If tan2A=cot(A-18^(0)), where 2A is an acute angle,find the value of A.

If tan2A=cot (A-12^@) , where 2A is an acute angle, find the value of A.

If tan2A backslash=backslash cot(A-18^(@)), where 2A is an acute angle,find the value of A.

If sin3A=cos(A-26^(@)), where 3A is an acute angle,find the value of A.

If tan 2A = cot (A-21^(@)) where 2A is an acute angel , then find the value of A.

If sin 3A =cos(A-10^(@)) where 3A is an acute angle , then find the value of A.

If sec 2A=cosec (A-42^@) , where 2A is an acute angle, find the value of A.

If sin2A=cos(A-12^(@))and2A is an acute angle , find the value of A.