Home
Class 10
MATHS
If sinA=(3)/(4), then find the value of ...

If `sinA=(3)/(4)`, then find the value of tan A.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan A \) given that \( \sin A = \frac{3}{4} \), we can follow these steps: ### Step 1: Understand the definition of sine The sine of an angle in a right triangle is defined as the ratio of the length of the opposite side (perpendicular) to the length of the hypotenuse. ### Step 2: Set up the triangle Given \( \sin A = \frac{3}{4} \), we can interpret this in a right triangle: - Let the length of the perpendicular side (BC) be 3. - Let the length of the hypotenuse (AC) be 4. ### Step 3: Use the Pythagorean theorem to find the base To find the length of the base (AB), we can use the Pythagorean theorem, which states: \[ AC^2 = AB^2 + BC^2 \] Substituting the known values: \[ 4^2 = AB^2 + 3^2 \] This simplifies to: \[ 16 = AB^2 + 9 \] Subtracting 9 from both sides gives: \[ AB^2 = 16 - 9 = 7 \] Taking the square root of both sides, we find: \[ AB = \sqrt{7} \] ### Step 4: Calculate \( \tan A \) The tangent of angle A is defined as the ratio of the opposite side (perpendicular) to the adjacent side (base): \[ \tan A = \frac{BC}{AB} \] Substituting the values we have: \[ \tan A = \frac{3}{\sqrt{7}} \] ### Final Answer Thus, the value of \( \tan A \) is: \[ \tan A = \frac{3}{\sqrt{7}} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise LONG SHORT ANSWER TYPE QUESTIONS|8 Videos
  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise VERY SHORT ANSWER TYPE QUESTIONS|7 Videos
  • CO-ORDINATE GEOMETRY

    MBD -HARYANA BOARD|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - D (SECTION - D)|4 Videos

Similar Questions

Explore conceptually related problems

If tan A=(3)/(4) then find the value of sin A*cos A

If sinA+cosA=(3)/(5) , then find the value of sinA-cosA .

If cos A =(1)/(3) ,then find the values of sin A and tan A.

If tan ^(-1)x=(3)/(4), then find the value of cos^(-1)x

If A lies in the third quadrant and tan A=(4)/(3) then find the value of sin A+cos A

If tan^(-1)((3)/(4))=A, then find the value of sin2A

If tan theta=(3)/(4) then find the values of sec theta and cos theta

If sinA=(sqrt(3))/(2)andsinB=(1)/(2) , then find the value if sin AcosB +cosAsinB.

If sinA=cosA,then find the value of sin 2A.