Home
Class 10
MATHS
Evalulate the following : sin60^(@)cos...

Evalulate the following :
`sin60^(@)cos30^(@)+sin30^(@)cos 60^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ \), we can follow these steps: ### Step 1: Identify the values of the trigonometric functions We know the following values from trigonometric ratios: - \( \sin 60^\circ = \frac{\sqrt{3}}{2} \) - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) - \( \sin 30^\circ = \frac{1}{2} \) - \( \cos 60^\circ = \frac{1}{2} \) ### Step 2: Substitute the values into the expression Now, we can substitute these values into the expression: \[ \sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ = \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) \] ### Step 3: Simplify the expression Calculating each term: - For the first term: \[ \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{3}{4} \] - For the second term: \[ \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \] Now, adding these two results together: \[ \frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1 \] ### Final Answer Thus, the value of \( \sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ \) is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise LONG SHORT ANSWER TYPE QUESTIONS|8 Videos
  • INTRODUCTION TO TRIGONOMETRY

    MBD -HARYANA BOARD|Exercise VERY SHORT ANSWER TYPE QUESTIONS|7 Videos
  • CO-ORDINATE GEOMETRY

    MBD -HARYANA BOARD|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - D (SECTION - D)|4 Videos

Similar Questions

Explore conceptually related problems

"(1) "sin60^(@)cos30^(@)+sin30^(@)cos60^(@)

sin60^(@).cos30^(@)+cos30^(@)*sin60^(@)

Evaluate the following (i) sin 60^@ cos30^@ + sin 30^@ cos 60^@ (ii) 2tan^2 45^@ + cos^2 30^@ - sin^2 60^@ (iii) (cos45^@)/(sec30^@ + c o s e c 30^@) (iv) (sin30^@ + tan45^@ - c o s e c 60^@ )/(sec30^@ + cos60^@ +cot45^@) (v) (5cos^2 60^@ + 4sec^2 30^@ - tan^2 45^@ )/ (sin^2 30^@ + cos^2 30^@ )

Evaluate each of the following : cos60^(@)cos30^(@)-sin60^(@)sin30^(@)

find the value of sin60^(@)cos30^(@)+sin30^(@)cos60^(@)

Evalutate : sin60^(@) cos 30^(@)+sin30^(@)cos 30^(@) .

(log)_(sin30^(@)cos60^(@))=1

Verify each of the following : (i) sin60^(@)cos30^(@)-cos60^(@)sin30^(@)=sin30^(@) (ii) cos60^(@)cos30^(@)+sin60^(@)sin30^(@)=cos30^(@) (iii) 2sin 30^(@)cos30^(@)=sin60^(@) (iv) 2sin45^(@)cos45^(@)=sin90^(@)