Home
Class 10
MATHS
Evaluate : cos 38^@ cos 52^@ - sin 38^@ ...

Evaluate : `cos 38^@ cos 52^@ - sin 38^@ sin 52^@`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \cos 38^\circ \cos 52^\circ - \sin 38^\circ \sin 52^\circ \), we can use the cosine addition formula. ### Step-by-Step Solution: 1. **Identify the terms**: We have \( \cos 38^\circ \cos 52^\circ \) and \( -\sin 38^\circ \sin 52^\circ \). 2. **Use the cosine addition formula**: The cosine of the sum of two angles is given by: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] Here, we can let \( a = 38^\circ \) and \( b = 52^\circ \). 3. **Apply the formula**: According to the formula, \[ \cos 38^\circ \cos 52^\circ - \sin 38^\circ \sin 52^\circ = \cos(38^\circ + 52^\circ) \] 4. **Calculate the angle**: Now, we add the angles: \[ 38^\circ + 52^\circ = 90^\circ \] 5. **Evaluate \( \cos 90^\circ \)**: We know that: \[ \cos 90^\circ = 0 \] 6. **Final Result**: Therefore, \[ \cos 38^\circ \cos 52^\circ - \sin 38^\circ \sin 52^\circ = 0 \] ### Conclusion: The value of \( \cos 38^\circ \cos 52^\circ - \sin 38^\circ \sin 52^\circ \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • MBD NEW STYPE MODEL TEST PAPER - 2

    MBD -HARYANA BOARD|Exercise SET - A (SECTION -B)|4 Videos
  • MBD NEW STYPE MODEL TEST PAPER - 2

    MBD -HARYANA BOARD|Exercise SET - A (SECTION -C)|5 Videos
  • MBD NEW STYLE MODEL TEST PAPER -1

    MBD -HARYANA BOARD|Exercise SET - D (SECTION - D)|4 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    MBD -HARYANA BOARD|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos

Similar Questions

Explore conceptually related problems

cos38^(@)cos52^(@)-sin38^(@)sin52^(@)=0

The value of cos38^(@)cos52^(@)-sin38^(@)sin52^(@) is :

Find the value of: (i)tan90^@ (ii) cos38^@cos52^@-sin38^@sin52^@

The value of sin^2 38^@-cos^2 52^@ is : sin^2 38^@-cos^2 52^@ का मान ज्ञात करें ।

cos 38^(@) cos 8^(@) + sin 38^(@)sin 8^(@) is equal to

Evaluate: (cos 58^@)/(sin 32^@)+(sin 22^@)/(cos 68^@)-(cos 38^@cosec 52^@)/(tan 18^@tan 35 ^@ tan 60^@tan 72^@tan 55^@) .

The value of sin^2 38^@+ sin^2 52^@+ sin^2 30^@- tan^2 45^@ is equal to: sin^2 38^@+ sin^2 52^@+ sin^2 30^@- tan^2 45^@ का मान किसके बराबर है?

The value of (2 sin^2 38^@ sec^2 52^@+ cos64^@ sin26^@+ sin^2 64^@)/(tan^2 23^@+cot^2 23^@-sec^2 67^@-cosec^2 67^@) is: (2 sin^2 38^@ sec^2 52^@+ cos64^@ sin26^@+ sin^2 64^@)/(tan^2 23^@+cot^2 23^@-sec^2 67^@-cosec^2 67^@) का मान ज्ञात कीजिए?

Without using trigonometric tables, prove that : (i) sin 43^@cos47^@+cos43^@ sin 47^@=1 (ii) cos 38^@cos 52^@-sin 52^@=0 (iii) sec 50^@sin40^@+cos40^@cosec 50^@=2 (iv) sec 70 ^@sin 20^@-cos 20^@-cosec 70^@=0

If cot 52^@ = b , tan 38^@= ?