Home
Class 11
MATHS
0.6" Prove that: "^(2)C(0)=(2^(n){1.3.5....

0.6" Prove that: "^(2)C_(0)=(2^(n){1.3.5.(2n-1)})/(n!)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: :2^(n)C_(n)=(2^(n)[1.3.5(2n-1)])/(n!)

Prove that: \ ^(2n)C_n=(2^n[1. 3. 5 (2n-1)])/(n !)

Prove that .^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !) .

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

Prove that , .^(2n)C_(n)=2^(n)(1.3.5...(2n-1))/(lfloorn)

Prove that ((4n)C_(2n))/((2n)C_(n))=(1.3.5...(4n-1))/([1.3.5...(2n-1)]^(2))

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that : ^(2n)C_n = (2^n [1.3.5. ..........(2n-1)])/(n!) .

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that (""^(n)C_(0))/(1)+(""^(n)C_(2))/(3)+(""^(n)C_(4))/(5)+(""^(n)C_(6))/(7)+...=(2^(n))/(n+1)