Home
Class 11
MATHS
int(-pi)^(5 pi)cot^(-1)(cot x)dx" equals...

int_(-pi)^(5 pi)cot^(-1)(cot x)dx" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi)^(5pi)cot^(-1)(cotx)dx equals

The value of int_(-2 pi)^(5 pi)cot^(-1)(tan x)dx is equal to (7 pi)/(2)(b)(7 pi^(2))/(2)(c)(3 pi)/(2) (d) None of these

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

int_(0)^(10 pi)cot^(-1)(cos t)dx

If I=int_(-2pi)^(5pi) cot^-1(tanx)dx . Then, 2I/pi^2 is ….

int_(0)^(pi/2)(1)/(1+cot^(4)x)dx=

Prove that int_(-(pi)/(2))^(2 pi)[cot^(-1)x]dx, where [.] denotes the greatest integer function.