Home
Class 11
MATHS
सिद्ध कीजिए कि 7^(2n)+2^(3n-3).3^(n-1), ...

सिद्ध कीजिए कि `7^(2n)+2^(3n-3).3^(n-1)`, प्रत्येक प्राकृतिक संख्या n के लिये 25 से विभाज्य है।

Promotional Banner

Similar Questions

Explore conceptually related problems

7^(2n)+2^(3n-3).3^(n-1) is divisible by 25

7^(2n)+2^(3n-3)*3^(n-1) is divisible by 25

7^(2n) + 2^(3n-3) 3^(n-1) is divisible by 25 for any natural number n gt 1 .

AA n in , 7^(2n) + 3^(n-1) . 2^(3n-3) is divisible by

Prove that : 7^(2n)+(2^(3n-3))(3^(n-1)) is divisible by 25 forall n in N .

Using mathematical induction , to prove that 7^(2n)+2^(3n-3). 3^(n-1) is divisible by 25 , for al n in N

If a positive integer .n. is divisible by 3, 5, and 7, then what is the next larger integer divisible by all these numbers? यदि एक सकारात्मक पूर्णांक .n. 3, 5, और 7 से विभाज्य है, तो सभी संख्याओं के द्वारा अगले कौन सा बड़ा पूर्णाक विभाज्य होगा ?

By induction prove that, 7^(2n)+2^(3(n-1))*3^(n-1) is a multiple of 25 for all ninNN .