Home
Class 12
MATHS
10^(x)+10^(y)=10...

10^(x)+10^(y)=10

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx when y = 10^(10^x) + 10^(x^x) + 10^(x^10)

Find the inverse of the function : y=(10^(x)-10^(-x))/(10^(x)+10^(-x))+1

Find (dy)/(dx) : y = log _(10)x+10^(x)+x^(10)+10

Computer the inverse of the function : y = (10^(x) - 1)/(10^(x) + 1)

If the positive numbers x,y&z satisfy xyz=1000,log_(10)x log_(10)y+log_(10)xy log_(10)z=1 and log_(x)10+log_(y)10+log_(z)10=(1)/(3) then the value of root(3)((log_(10)x)^(3)+(log_(10)y)^(3)+(log_(10)z)^(3)) is

y=log_(10)10^(10^(log_(10)cos ec10x)) then (dy)/(dx)

Find (dy)/(dx)" when "y=10^(x^(10^(x))) .

(x/10+y)(x/10-y)=?