Home
Class 12
MATHS
" Q5.If "u=sin^(-1)((2x)/(1+x^(2)))" and...

" Q5.If "u=sin^(-1)((2x)/(1+x^(2)))" and "v=tan^(-1)((2x)/(1-x^(2)))," then "find(du)/(dv)

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))), where '-1

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))) , then (du)/(dv) is :

If u=sin^(-1)((2x)/(1+x^(2)))andv=tan^(-1)((2x)/(1-x^(2))) , then (du)/(dv) is

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Let U=sin^(-1)((2x)/(1+x^(2))) and V=tan^(-1)((2x)/(1-x^(2))), then (dU)/(dV)=1/2(b)x(c)(1-x^(2))/(1+x^(2))(d)1

If sin^(-1)(2x)/(1+x^(2))=tan^(-1)(2x)/(1-x^(2)), then find the value of x.

If u = sin^-1(2x/(1+x)^2) and v = tan^-1(2x/(1-x^2)) , the du/dv is

Let U=sin^(-1)((2x)/(1+x^2)) and V=tan^(-1)((2x)/(1-x^2)) , then (d U)/(d V)= (a) 1//2 (b) x (c) (1-x^2)/(1+x^2) (d) 1