Home
Class 12
MATHS
If a,b,c are the sides of a triangle and...

If `a,b,c` are the sides of a triangle and `s=(a+b+c)/2,` then prove that `8(s-a)(s-b)(s-c)lt=abc`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are the sides of a triangle and s=(a+b+c)/(2), then prove that 8(s-a)(s-b)(s-c)<=abc

If a,b,c are the sides of a triangle and s=(a+b+c)/2 , prove that 8(s-a)(s-b)(s-c)leabc .

If 2s = a + b + c , then prove that (s-a)^3+(s-b)^3+(s-c)^3+3 abc = s^3

a,b,c are sides of the triangle and s be its semi perimeter and (s-a)=90, (s-b)=50 and (s-c)=10 then find the area of the triangle

Statement I: The sides of triangle are 20cm,21cm,29cm. Its area is 210cm^(2) Statement II : 2s=(a+b+c), where a,b,c are the sides of triangle,then area=sqrt(s(s-a)(s-b)(s-c))

Using vectors: Prove that if a,b,care the lengths of three sides of a triangle then its area Delta is given by Delta=sqrt(s(s-a)(s-b)(s-c)) where 2s=a+b+c

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)