Home
Class 11
PHYSICS
" Prove that "1+2+3+...+n<(1)/(8)(2n+1)^...

" Prove that "1+2+3+...+n<(1)/(8)(2n+1)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

Prove that 1+2+3+.....+=(2n+1))=n^(2)

Using principle of mathematical induction, prove that 1 + 3 + 3^(2) + … 3^(n-1) = (3^(n) - 1)/(2)

Prove that 1+2+3+4......+N<(1)/(8)(2n+1)^(2)

Prove that 1^1*2^2*3^3....n^nle((2n+1)/3)^((n(n+1))/2) .

Prove that for n=1, 2, 3... [(n+1)/2]+[(n+2)/4]+[(n+4)/8]+[(n+8)/16]+...=n where [x] represents Greatest Integer Function

Prove that for n=1, 2, 3... [(n+1)/2]+[(n+2)/4]+[(n+4)/8]+[(n+8)/16]+...=n where [x] represents Greatest Integer Function

Prove that for n=1, 2, 3... [(n+1)/2]+[(n+2)/4]+[(n+4)/8]+[(n+8)/16]+...=n where [x] represents Greatest Integer Function

Prove that for n=1,2,3...[(n+1)/(2)]+[(n+2)/(4)]+[(n+4)/(8)]+[(n+8)/(16)]+...=n where [x] represents Greatest Integer Function