Home
Class 8
MATHS
(3xy-2ab)^(3)-(3xy+2ab)^(3)...

(3xy-2ab)^(3)-(3xy+2ab)^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Divide: 6x^(4)yz-3xy^(3)z+8x^(2)yz^(2)yz^(4) by 2xyz(2)/(3)a^(2)b^(2)c^(2)+(4)/(3)ab^(2)c^(3)-(1)/(5)ab^(3)c^(2)by(1)/(2)abc

x^(3)x4xy^(2)x(3)/(2)xy^(3)=

If a^(2)x^(4)+b^(2)y^(4)=c^(6), then the maximum value of xy is (a) (c^(2))/(sqrt(ab)) (b) (c^(3))/(ab)(c^(3))/(sqrt(2ab)) (d) (c^(3))/(2ab)

Subtract: x^(2)y-(4)/(5)xy^(2)+(4)/(3)xy om (2)/(3)x^(2)y+(3)/(2)xy^(2)-(1)/(3)xy

Simplify: 2x^(2)+3xy -3y^(2)+x^(2)-xy+y^(2)

Factorize: x^(3)-2x^(2)y+3xy^(2)-6y^(3)6ab-b^(2)+12ac-2bc

Perform the division: (x ^(3) y ^(3) + x ^(2) y ^(3) - xy ^(4) + xy)div xy

Find the degree of the given polynomial 3abc^3 xy-9ab^2xy^2+a^2b^3

Given that x,y in R: solve (4x^(2)+3xy)+(2xy-3x^(2))iota=(4y^(2)-(x^(2))/(2))+(3xy-2y^(2))

The differential equation of all conics whose centre lies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these