Home
Class 12
MATHS
[" Let "f:[1,oo)rarr R" and "f(x)=x int(...

[" Let "f:[1,oo)rarr R" and "f(x)=x int_(1)^(x)(e^(t))/(t)dt-e^(x)," then "],[" a."f(x)" is an increasing function "],[" b "lim_(x rarr oo)f(x)rarr oo],[" c."f'(x)" has a maxima at "x=e],[" d "f(x)" is a decreasing function "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[1,oo)->R and f(x)=x(int_1^xe^t/tdt)-e^x .Then (a) f(x) is an increasing function (b) lim_(x->oo)f(x)->oo (c) fprime(x) has a maxima at x=e (d) f(x) is a decreasing function

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f:(0,oo) in R be given f(x)=int_(1//x)^(x) e^-(t+(1)/(t))(1)/(t)dt , then

If f(x) = int_(0)^(x) t.e^(t) dt then f'(-1)=

Let f:(0,oo) to vec R be given by f(x)=int_(1/x)^x(e^(-(t+1/t))dt)/t , then

Let f : (0,infty) rarr R be given by f(x) = int_(1/x)^(x) e^-(t + 1/t) dt/t then

Let f:(0,oo)rarr R and F(x^(3))=int_(0)^(x^(2))f(t)dt If F(x^(3))=x^(3)(x^(2)+x+1), then f(27)=