Home
Class 12
MATHS
[" If "g(x)" is a differentiable real va...

[" If "g(x)" is a differentiable real valued function satisfying "g''(x)-3g'(x)>3AA x>=0" and "g'(0)=-1," then "g(x)-],[x>0]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x) and g (0)=1 , then g(x)((2-sin2x)/(1-cos2x))dx is equal to

Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x) and g (0)=1 , then intg(x)((2-sin2x)/(1-cos2x))dx is equal to

f and g differentiable functions of x such that f(g(x))=x," If "g'(a)ne0" and "g(a)=b," then "f'(b)=

If f(x), g(x) be twice differentiable function on [0,2] satisfying f''(x)=g''(x) , f'(1)=4 and g'(1)=6, f(2)=3, g(2)=9, then f(x)-g(x) at x=4 equals to:- (a) -16 (b) -10 (c) -8

If f(x),g(x) be twice differentiable functions on [0,2] satisfying f''(x)=g''(x)f'(1)=2g'(1)=4 and f(2)=3g(2)=9 then f(x)-g(x) at x=4 equals (A) 0 (B) 10 (C) 8 (D) 2

If f(x),g(x) be twice differentiable function on [0,2] satisfying f''(x)=g''(x) , f'(1)=4 and g'(1)=6,f(2)=3,g(2)=9,then f(x)-g(x) at x=4 equals to:- (a) -16 (b) -10 (c) -8

Let g(x) be a function satisfying g(0)=2,g(1)=3,g(x+2)=2g(x)-g(x+1), then find g(5)

Let g(x) be a function satisfying g(0) = 2, g(1) = 3, g(x+2) = 2g(x+1), then find g(5).

Let g(x) be a function satisfying g(0) = 2, g(1) = 3, g(x+2) = 2g(x+1), then find g(5).