Home
Class 12
MATHS
Given f(x)=cos (logx), find the value of...

Given `f(x)=cos (logx),` find the value of
`f(x).f(y)-(1)/(2)[f(x/y)+f(xy)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) = cos (log_e x) , find the value of : f(x) f(y)-1/2[f(x/y)+f(xy)] .

if f(x) = cos (log x) then the value of f(x) f(y)-(1//2) [f(x//y) + f(xy) ] is

If f(x) = cos(log_e x) , then find the value of f(x) cdot f(y) - 1/2[f(x/y) + f(xy)]

If f(x) = cos(log_ex) then show that f(x).f(y)-1/2[f(xy) + f(x/y)]=0

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), " then " f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)] has the value

If f(x) = cos (log_(e) x) , then f(x)f(y) -1/2[f(x/y) + f(xy)] has value