Home
Class 11
MATHS
" Let "f(x)=nx+n-[nx+n]+tan(pi x)/(2)," ...

" Let "f(x)=nx+n-[nx+n]+tan(pi x)/(2)," where "[x]" is the greatest integer "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=nx + n-[nx + n]+tan((pix)/ 2) , where 9, [x] is the greatest integers function le x and n in N.It is 1) a periodic function of period1 2) a periodic function of period 4 3) not periodic 4) a periodic function of period 2

Let f(x)=n x + n - [n x + n] tan"" (pi x)/(2) , where [x] is the greatest integer le x and n in N . It is

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

Which of the following function is/are periodic? A. f(x)={1,0,x is rationalx is irrational B. f(x)={x−[x],12,2n≤x<2n+12n+1≤x<2n+2 where [.] denotes the greatest integer function n∈Z C. f(x)=(−1)[2xπ, where [.] denotes the greatest integer function D. f(x)=x−[x+3]+tan(πx2), where [.] denotes the greatest integer function, and a is a rational number

Let f(x)=In [cos|x|+(1)/(2)] where [.] denotes the greatest integer function, then int_(x_(1))^(x_(2)) lim_(nto oo)(({f(x)}^(n))/(x^(2)+tan^(2)x))dx is equal to, where x_(1),x_(2) in [(-pi)/(6),(pi)/(6)]

Let f(x)=In [cos|x|+(1)/(2)] where [.] denotes the greatest integer function, then int_(x_(1))^(x_(2)) lim_(nto oo)(({f(x)}^(n))/(x^(2)+tan^(2)x))dx is equal to, where x_(1),x_(2) in [(-pi)/(6),(pi)/(6)]

Let f(x)=[n+p sin x], x in (0, pi) n in Z and p is a prime number, where [.] denotes the greatest integer function. Then find the number of points where f(x) is not differentiable.

If f(n)=int_(0)^(x)[cos t]dt, where x in(2n pi,2n pi+(pi)/(2));n in N and [*] denotes the greatest integer function.Then, the value of f((1)/(pi))| is ...

lim_(xrarroo)([x]+[2x]+[3x]+….+[nx])/(n^(2)) , where [*] denotes greatest integer function, is