Home
Class 12
MATHS
Let A=(a(ij))(3xx3) and B=(b(ij))(3xx3),...

Let `A=(a_(ij))_(3xx3) and B=(b_(ij))_(3xx3)`, where `b_(ij)=(a_(ij)+a_(ji))/(2) Aai, j`. Number of such matrices A whose elements are selected from the set `{0, 1, 2, 3}` such that `A=B`. Are

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=(a_(ij))_(3xx3) and B=(b_(ij))_(3xx3) , where b_(ij)=(a_(ij)+a_(ji))/(2) . Number of such matrices A whose elements are selected from the set {0, 1, 2, 3} such that A=B . Are

If A=(a_(ij))_(2xx3),B=(b_(ij))_(2xx3) then the order of AB will be

If matrix A=[a_(ij)]_(3xx3) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

If matrix A = [a_(ij)]_(3xx3), matrix B= [b_(ij)]_(3xx3) where a_(ij) + a_(ij)=0 and b_(ij) - b_(ij) = 0 then A^(4) cdot B^(3) is