Home
Class 12
PHYSICS
" (n) "(1)/(sqrt(2))...

" (n) "(1)/(sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

{:(" "Lt),(n rarr oo):} ((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+(1)/(sqrt(n^(2)+3n))+....(1)/(sqrt(n^(2)+n(n-1)))))=

If S_(n)={(1)/(1+sqrt(n))+(1)/(2+sqrt(2n))+(1)/(3+sqrt(3n))+....+(1)/(n+sqrt(n^(2)))} then {:(" "Lt),(n rarr oo):} S_(n)=

lim_(nrarroo) {(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+...+(1)/(sqrt(n^(2)-(n-1)^(2)))} is equal to-

Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n)+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+.......+(1)/(sqrt(n^(2)+(n-1)n))]=.........

If n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8)n is

n in N,((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

S_(n)=[(1)/(1+sqrt(n))+(1)/(2+sqrt(2n))+...+(1)/(n+sqrt(n^(2)))] then (lim_(n rarr oo)S_(n) is equal to (A)log2(B)log4 (C) log 8 (D) none of these

For all n in N,1+(1)/(sqrt(2))+(1)/(sqrt(3))+(1)/(sqrt(4))++(1)/(sqrt(n))